The Influence of Sea-Surface Temperature on Surface Wind in the Eastern Equatorial Pacific: Seasonal and Interannual Variability

1989 ◽  
Vol 2 (12) ◽  
pp. 1492-1499 ◽  
Author(s):  
J. M. Wallace ◽  
T. P. Mitchell ◽  
C. Deser
2020 ◽  
Author(s):  
Gerald Rustic ◽  
Athanasios Koutavas ◽  
Thomas Marchitto

<p>Sea surface temperatures in the eastern equatorial Pacific exert powerful influence on the climate beyond the tropics through strong atmosphere-ocean coupling. Records of eastern Pacific sea surface temperatures are of vital importance for identifying the linkages between short-term climate variability and long-term climate trends. Here we reconstruct eastern equatorial Pacific sea surface temperature and salinity from paired trace metal and stable isotope analyses in foraminifera from a sediment core near the Galápagos Islands. Sea surface temperatures are correlated with reconstructed Northern and Southern hemisphere temperature records suggesting a common origin. We propose that this temperature signal originates in the extra-tropics and is transmitted to the eastern Pacific surface via its source waters. We find exceptions to this cooling during the Little Ice Age and during the last century, where notable sea surface temperature increases are observed. We calculate δ<sup>18</sup>O<sub>sw </sub>from paired stable isotope and trace element analyses and derive salinity, which reveals a significant trend toward fresher surface waters in the eastern equatorial Pacific. The overall trend toward cooler and fresher sea surface conditions is consistent with longer-term trends from both the Eastern and Western Pacific.</p>


Author(s):  
Harry J Dowsett ◽  
Marci M Robinson

The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east–west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.


Sign in / Sign up

Export Citation Format

Share Document